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Abstract

Simple curves on surfaces are often represented as se-
quences of intersections with a triangulation. However,
topologists have much more succinct ways of represent-
ing simple curves such as normal coordinates which
are exponentially more succinct than intersection se-
quences.

Nevertheless, we show that the following two basic
tasks of computational topology, namely performing a
Dehn-twist of a curve along another curve, and com-
puting the geometric intersection number of two curves,
can be solved in polynomial time even in the succinct
normal coordinate representation. These are the first al-
gorithms that solve these problems in time polynomial
in the succinct representations.

As an application we show that a generalized notion
of crossing number can be decided in NP, even though
the drawings can have exponential complexity.

1 Introduction

In an earlier paper we started investigating algorithms
for basic problems of computational topology [14]; we
extend this work to deal with crossings of curves in sur-
faces which has applications to graph drawing.

One of the driving problems of computational topol-
ogy, long before it acquired the name, has been the prob-
lem of recognizing the unknot. The story begins in 1930
with Kneser [9] who introduced the succinct normal co-
ordinate representation for curves and surfaces. This
led to the theory of normal surfaces which was used by
Haken in 1961 to show that the unknot can be recog-
nized by an algorithm. Haken’s approach was pushed
further by Hass, Lagarias, and Pippenger who exploited
the succinctness of the representation to show that the
unknot can be recognized in NP [8]. To this end they
had to verify in polynomial time that a special type of
normal surface is an essential disk, in particular, that it
is connected. Agol, Hass, and Thurston [1] strengthened
this result by showing that the number of connected
components of a normal surface can be computed in
polynomial time. This immediately implies polynomial

time algorithms for checking whether a normal surface
is connected, and whether it is orientable.

Independently, we developed a set of tools for algo-
rithms on normal curves in [14], that grew out of our
work on the string graph recognition problem [15]. We
showed how to compute connected components, count
them, decide isotopy of curves, and compute the alge-
braic intersection number of two curves. The novel in-
gredient in our approach was that it was based on recent
developments of algorithms over free monoids rather
than groups.

In the current paper we continue the study of curves
by showing how to efficiently perform Dehn twists, a
fundamental topological operation. As a consequence
we obtain an algorithm for computing the geometric in-
tersection number of two curves. The following theorem
summarizes our main results.

Theorem 1 The tasks of performing a Dehn twist of
a curve along another curve on an arbitrary surface,
and computing the geometric intersection number of two
curves on a surface with boundary can be solved in poly-
nomial time in the normal coordinate representation (in
a given triangulation).

These results are very strong, since the normal coor-
dinate representation is very succinct: the length of a
curve is exponential in the size of its representation. As
an application of Theorem 1 we show that a general-
ized notion of crossing number lies in NP, which unifies
several non-trivial complexity results in graph drawing.

There has been previous work on calculating the ef-
fect of a Dehn twist. Penner [12] gave explicit formu-
las describing the action of the Lickorish generators on
the Dehn-Thurston coordinates for the set of all isotopy
classes of simple curves. This solves the problem for a
very restricted case only, the Lickorish generators. Dehn
twists along other curves can be obtained by applying
Dehn twists along Lickorish generators, but exponen-
tially many Dehn twists may be needed.

More recently Hamidi-Tehrani and Chen [7] gave an
algorithm to compute the action of a set of generators on
the space CS(M) given by measured π-train tracks, but
its running time is exponential in the representation.



Hamidi-Tehrani’s thesis [6] gave an algorithm for the
geometric intersection number running in time polyno-
mial in the length of the curves. Again, this translates
only to an exponential time algorithm in the succinct
representations.

2 Surfaces, Curves, and Words

2.1 Representations of Surfaces and Simple Curves

By a surface M we mean a connected, compact, ori-
entable 2-manifold with boundary ∂M .1 A curve in M
is the image of [0, 1] under some continuous function f ;
it is simple if f is injective with the possible exception
of f(0) = f(1). Intuitively, the curve is simple if it has
no self-intersections; a curve is closed if it has no end-
points, that is, f(0) = f(1). A closed curve is trivial
if it can be contracted to a point (null-homotopic) or a
boundary component. We call a curve a properly em-
bedded simple arc if it is a simple curve with both of its
endpoints on ∂M .

A simple multi-curve α in M is the disjoint union
of any number of non-trivial simple closed curves and
properly embedded arcs.2 Call a simple multi-curve
closed if all its connected components are closed. By
isotopy we mean isotopy rel boundary, i. e., a continu-
ous deformation which leaves ∂M fixed and does not
introduce self-intersections. Let CS(M) be the set of all
isotopy classes of simple multi-curves. Let CS0(M) ⊆
CS(M) be the set of isotopy classes of simple multi-
curves whose components are simple closed curves.

The geometric intersection number, i(α, β) of two
(isotopy classes of) simple multi-curves α, β ∈ CS(M)
is the minimal number of intersections between any of
their representatives.

A triangulation T of a surface M is a set of points V
in M and an embedded collection of arcs E such that
each component of M − E is an open disc bounded by
three curves from E. A triangulation is minimal if the
vertices V are on the boundary ∂M and each boundary
component contains exactly one vertex of V .

Let M be given by a triangulation. A simple multi-
curve γ is normal w.r.t. T if all intersections of γ with T
are transversal and if γ enters a triangle t via an edge e
then it leaves t via an edge different from e. Any simple
multi-curve can be made normal by simple redrawing
moves, so for any simple multi-curve there is a normal
multi-curve isotopic to it. Normal curves are very well-
behaved with respect to the triangulation; in particular,
given a triangle a, b, c the curve segments within the

1In other words, each point in the manifold has a neighborhood
homeomorphic to a disk or a half-disk (if it is on the boundary).

2Formally, it is a proper 1-dimensional submanifold of M such
that no component of α is null-homotopic or homotopic to the
boundary.

triangle fall into three types: segments crossing from ab
to ac, from ab to bc and from ac to bc.

Moreover, the number of segments of each type is
determined by the number of intersections of the multi-
curve with ab, bc and ac: for example there are (|γ ∩
ab|+ |γ ∩ ac| − |γ ∩ bc|)/2 segments crossing from ab to
ac. This allows us to describe a normal curve γ by its
normal coordinates, which is the vector (|γ∩e|)e∈T . The
complexity of the normal coordinates is the number of
bits needed to encode the vector (|γ∩e|)e∈T , by writing
each coordinate in binary. Any two simple multi-curves
with the same normal coordinates are isotopic if they
agree on the boundary. If the triangulation is minimal
then the converse is true—any isotopic curves have the
same normal coordinates. (Note that only surfaces with
non-empty boundary have minimal triangulations.)

Let α be a simple closed curve in M . A Dehn twist
Dα : M → M along α is a homeomorphism of M ob-
tained by cutting M along α, rotating one of the copies
of α by 360 degrees and gluing the two copies back
together. More precisely, if an annular neighborhood
around α is parameterized by {(x, ϕ), 1 ≤ x ≤ 2, 0 ≤
ϕ ≤ 2π} then Dα is (x, ϕ) 7→ (x, ϕ + 2π(x− 1) mod 2π)
on the annulus and the identity elsewhere. If α is a
simple closed multi-curve, we define Dα to be the com-
position of Dα′ for all connected components α′ of α
(note that all α′ are simple closed curves).

2.2 Quadratic Word Equations and Compressed

Representation of Words

Let Σ be an alphabet. A word in Σ∗ can be represented
by a straight-line program (SLP), which is a sequence
of assignments Xi := expr, i = 1, . . . , n, where expr

is a either a symbol from Σ or XjXk, 1 ≤ j, k < i.
The length n of an SLP representing a word w can be
exponentially smaller than |w|, the length of w.

Example 2 Over the alphabet {a, b} the SLP X1 = a,
X2 = b, X3 = X1X2, X4 = X3X3, · · · , Xn =
Xn−1Xn−1 of length n represents the word (ab)2

n−3

.

Equality of two words given by SLPs of lengths m
and n can be tested in deterministic time O(m2n2) [11]
and in randomized time O(m + n) [5].

A word equation with specified lengths is an equation
over a free monoid in which every variable has to be
replaced with a word of a specified length.

Example 3 The word equation XabY = Y baX in vari-
ables X and Y has two shortest solutions: X = ǫ, Y = a
and X = b, Y = ǫ, where ǫ is the empty word. If we
require |X | = 4 and |Y | = 2, the equation has no solu-
tion. However, if we require |X | = 3 and |Y | = 1, then
X = aba and Y = a is a solution.



Finding a solution of a word equation in general is
NP-hard. However, the word equations arising in our
context all have specified lengths and are quadratic: ev-
ery variable occurs at most twice in the equation. For
quadratic word equations a faster and simple algorithm
is known which also guarantees that the solution can be
expressed as an SLP.

Theorem 4 (Robson, Diekert [13]) The solvability
of a quadratic word equation with specified lengths can
be decided in time linear in the complexity of the equa-
tion. If there exists a solution, a linear-size SLP for any
subword of the solution can be found in linear time.

2.3 Representations of Simple Curves

We have seen that simple curves can be succinctly rep-
resented using normal coordinates, assuming they have
been normalized with respect to some triangulation T .
Another natural way of representing such a simple curve
would be by listing the order in which it crosses the
edges of the triangulation: Arbitrarily fix an orienta-
tion ~e of each edge e ∈ T . Given an oriented simple
curve γ let w be a word obtained by traversing γ and
appending e to w if ~e is crossed from left to right and
appending e−1 is ~e is crossed from right to left. Then
w is called an intersection sequence of γ with the trian-
gulation. (Note that for closed curves the intersection
sequence is only determined up to cyclic permutation.)

An intersection sequence can be exponentially long
compared to the normal coordinates of a simple curve,
but, as it turns out, intersection sequences are highly
compressible since they can be obtained as solutions of
quadratic word equations and can therefore be repre-
sented by SLPs. Moreover, moving from an SLP rep-
resentation of an intersection sequence to normal coor-
dinates is simple: we just need to count the number
of occurrences of each symbol in the compressed word,
a task that can be performed in time O(n) for each
symbol, see [4]. In short, normal coordinate represen-
tation and SLP representation of intersection sequences
are polynomially equivalent.

Theorem 5 Let M be a surface given by a triangula-
tion T . Let α ∈ CS(M) be a simple curve in M . If α is
given by an intersection sequence with T encoded by an
SLP of length n, then the normal coordinates of α can
be computed in time O(n · |T |). If α is given by normal
coordinates in T with complexity n, then an SLP of size
O(n) for an intersection sequence of α with T can be
obtained in time O(n).

We omit the proof of this result, the interesting direc-
tion (from normal coordinates to an SLP for an inter-
section sequence), follows techniques suggested in [14].
Note that while normal coordinates can encode multi-
curves (which can have many connected components),

intersection sequences are restricted to simple curves
(which have a single component).

3 Dehn Twists and Applications

3.1 Computing Dehn Twists

The Dehn twist of a curve given by normal coordinates
can be computed in time polynomial in the size of the
representation. Our algorithm works for all surfaces
(that is, with or without boundary).

Theorem 6 Let M be a surface of genus g given by a
triangulation T . Let be α ∈ CS(M) and β ∈ CS0(M) be
simple multi-curves in M given by normal coordinates
of complexity n. The normal coordinates of a represen-
tative of the Dehn twist Dβ(α) can be computed

• in time O(g · n3) by a randomized algorithm with
small probability of error; and

• in time O(g · n9) by a deterministic algorithm.

We have to omit the proof, but we can give a rough
outline: we first prove the result for a simple closed
curve β. Performing a Dehn twist along a simple closed
curve α can be captured by a quadratic word equation
and therefore Dβ(α) can be represented by a compressed
SLP. There is some subtlety here, since the word ob-
tained as a solution of the quadratic word equation may
not correspond to a normalized simple curve; however,
normalization can be performed on the word (it corre-
sponds to cancellation over a free monoid with inverses);
this step is computationally expensive, since it requires
iterated equality testing. The result can then be gener-
alized to simple closed multi-curves α; this might require
performing an exponential number of Dehn twists, but
this can be done “in parallel” using word equations.

3.2 Computing Geometric Intersection Numbers

For surfaces with a boundary we can compute geomet-
ric intersection numbers in polynomial time once we can
compute Dehn twists in polynomial time. The reason is
that the complexity of Dehn twists is closely related to
the geometric intersection number: Considering repre-
sentatives of β and γ which intersect minimally shows
that for any simple curve α

|Dn
γ (β) ∩ α| ≤ |β ∩ α| + n · i(β, γ)|γ ∩ α|,

where Dn
γ is the n-fold application of Dγ . Hence, Dn

γ (β)
grows by a rate of at most i(β, γ)|γ ∩ α| in n. For suffi-
ciently large n, it grows exactly at that rate:

Lemma 7 Let M be a surface and α, β, γ simple curves
on M with γ closed. Let n = 2i(α, β). Then

i(γ, β) =
i(α, Dn+1

γ (β)) − i(α, Dn
γ (β))

i(α, γ)
.



We omit the proof which is based on results by Fathi,
Laudenbach, Poénaru [3] and Luo [10]. Lemma 7 is the
core observation needed to establish the main result:

Theorem 8 The geometric intersection number of two
curves given by normal coordinates on a surface with
boundary can be computed in polynomial time.

3.3 Generalized Crossing Number

We can apply our algorithm for calculating the geomet-
ric intersection number of two curves to a notoriously in-
tractable graph drawing problem: the crossing number.
The crossing number, cr(G), of a graph G = (V, E) is
the smallest number of intersections in a drawing of G in
the plane (making certain standard assumptions about
the drawing). Given a weight function w : E2 → N,
we can define a generalization, crw(G) of the crossing
number as the minimum value of

∑

e,f∈E

iD(e, f) · w(e, f)

over all drawings D of G in the plane. For w(e, f) = 1
we obtain the usual crossing number.

Theorem 9 Deciding whether crw(G) ≤ k lies in NP
for any polynomial-time computable weight function w.

The generalized crossing number is a powerful mod-
eling tool. For example, the weak realizability prob-
lem is a special case, and, therefore, lies in NP. This,
in turn implies that the string graph problem, topo-
logical inference, and several other problems also lie in
NP, see [15]). As another application, we consider the
recently introduced simultaneous graph drawing model
SCM+ introduced by Chimani, Jünger, and Schulz [2]:
given two planar graphs on the same vertex set, a simul-
taneous drawing with fixed edges is a drawing in which
each graph by itself is planar and shared edges are drawn
identically. Now, if we relax the condition that the two
graphs be planar, we get the simultaneous crossing num-
ber, which is the smallest number of crossings in a draw-
ing of the union of the two graphs that occur between
edges of the same graph. If, in addition, we require that
the total number of crossings be minimized, we get the
SCM+ model. It is easy to see that this problem is a
special case of our generalized crossing number problem.
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